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Abstract
The dynamical symmetries of classical, relativistic and quantum-mechanical
Kepler systems are considered to arise from geometric symmetries in PQET
phase space. To establish their interconnection, the symmetries are related
with the aid of a Lie-algebraic extension of Dirac’s correspondence principle,
a canonical transformation containing a Cunningham–Bateman inversion,
and a classical limit involving a preliminary canonical transformation in
ET space. The Lie-algebraic extension establishes the conditions under
which the uncertainty principle allows the local dynamical symmetry of a
quantum-mechanical system to be the same as the geometrical phase-space
symmetry of its classical counterpart. The canonical transformation converts
Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic
systems whose classical limit produces Keplerian systems. Locally Cartesian
relativistic PQET coordinates are converted into a set of eight conjugate position
and momentum coordinates whose classical limit contains Fock projective
momentum coordinates and the components of Runge–Lenz vectors. The
coordinate systems developed via the transformations are those in which
the evolution and degeneracy groups of the classical system are generated
by Poisson-bracket operators that produce ordinary rotation, translation and
hyperbolic motions in phase space. The way in which these define classical
Keplerian symmetries and symmetry coordinates is detailed. It is shown that for
each value of the energy of a Keplerian system, the Poisson-bracket operators
determine two invariant functions of positions and momenta, which together
with its regularized Hamiltonian, define the manifold in six-dimensional phase
space upon which motions evolve.
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1. Introduction

Current understandings of dynamical symmetries of Kepler systems might be said to begin
with Fock’s 1935 discovery of the hyperspherical symmetry of hydrogen-like atoms [1]. It was
immediately followed by Bargmann’s production of the first- and second-order differential
operators whose action on energy-degenerate Schrödinger wavefunctions is isomorphic to
that of generators of the Lie groups SO(4), SO(3,1) and E(3) [2]. The introduction of SU(3)
into elementary particle physics in the early 1960s catalyzed a vast resurgence of interest
in these Lie symmetries. This led to the discovery of the SO(4,1) and SO(4,2) ‘hidden’
symmetries of Kepler systems, the Lie symmetries of a host of other systems, the development
of the concept of ‘dynamical symmetry’, and the development of the theory of the generalized
Lie (Lie–Backlund) transformations required to properly formulate many of the invariance
transformations of Schrödinger’s (and other) partial differential equations. Review articles by
Mclntosh [3], and by Bander and Itzykson [4] describe the many investigations of dynamical
symmetries published during this period. Further references will be found in Barut’s 1971
monograph [5], and in a paper by Evans published in 1990 [6]. The SO(4,1) dynamical
symmetry of hydrogen-like atoms was discovered in 1966 [7], as was their SO(4,2) symmetry
[8]. The SO(4,2) dynamical symmetry of classical Kepler systems was established by Gyorgyi
in 1967 [9].

Many textbooks and monographs now deal with the dynamical symmetries of hydrogen-
like atoms [10]. Bluman and Kumei review and extend work on Lie–Backlund symmetries in
their 1989 textbook, Symmetries and Differential Equations [11]. Further developments are
contained in Cantwell’s Introduction to Symmetry Analysis [12], published in 2002, and in a
series of monographs by Ibragimov [13].

In the 1970s, interest in relativistic quantum field theories led to a resurgence of interest in
the invariance of Maxwell’s equations under the inversion that had been discovered by Bateman
and Cunningham in 1909 [14]. Thousands of papers exploring the physical significance and
the mathematics of the resulting projective and conformal groups have been published, many
of them dealing with the role of the group in other fields (e.g., statistical mechanics). Kastrup
has written two helpful overviews of these developments [15]. In their monograph, Theory of
Group Representations and Applications [16]. Barut and Raczka have given a straightforward
discussion of relativistic wave equations invariant under the Bateman–Cunningham conformal
group.

A 1990 article by Shlomo Sternberg and Victor Guillemin, ‘Variations on a Theme
by Kepler’ provides an overview of many mathematical connections relevant to studies of
Keplerian systems, not a few of which have arisen from such studies [17].

In the current contribution, the dynamical symmetries of a relativistic, and a quantum-
mechanical, Kepler system are related to the dynamical symmetries of classical Kepler systems,
which are considered to be geometrical symmetries in PQET phase space. The Lie algebraic
extension of Dirac’s correspondent principle that is mentioned in the abstract, and established
in section 7, refines and extends an earlier version due to the present author [18].

To establish a clear relation between the dynamical symmetry of classical Kepler systems
and the dynamical symmetry of the relativistic Kepler system, two canonical transformations
are introduced. Toward the end of section 2, to properly deal with the fact that classical Kepler
trajectories of different energies may have different topologies, the first of these, a canonical
diffeomorphism in ET space is described. It is utilized in section 4, in which both closed
and open classical trajectories become related to relativistic trajectories that are open curves.
The transformation is based on the work of Poincaré [19], and Wulfman and Wybourne [20].
In section 3, a further, previously unexploited, canonical transformation is introduced. It
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is a Levi Civita transformation [21] in PQET space that contains a Bateman–Cunningham
inversion. It interconverts two canonically conjugate sets of locally Cartesian position and
momentum coordinates, (q4, p4) and (Q4, P4), and is a diffeomorphism in every region of
PQET space that does not contain a light cone or its canonical conjugate. The transformation
converts a Poincaré-invariant free-particle Hamiltonian into a Lorentz invariant version of a
Kepler Hamiltonian, a Hamiltonian that has ISO(3,1) dynamical symmetry.

In section 4 it is shown that the classical limit, Qc, Pc, of the Q4 and P4 contains the
components of the Runge–Lenz vectors, a(E), and corresponding Fock projective momenta.
In section 5, the eight Qc, Pc, are shown to define a set of eight ‘symmetry adapted’ coordinates,
four ρ(E)k and four π (E)k. The four π (E)k are contained in an invariant PE subspace of PQET
phase space. The set of variables ρ(E)k and π (E)k differs from similar variables introduced
by Gyorgi [9] only by energy-dependent proportionality factors. Neither set of variables are
canonically conjugate sets in either PQ, or PQET, space.

The relation of classical Kepler symmetries to symmetries and topologies in phase space
has been investigated by a number of authors. In 1970, Moser used the classical analog
of Fock’s stereographic projection to establish the S(3) topology of negative energy Kepler
manifolds in phase space [22]. In 1974, Souriau established that when the energy is negative,
regularized Kepler manifolds in PQ phase space have the SO(4) symmetry, as well as the S(3)
topology, of the surface of a hypersphere in four-dimensional Euclidean space [23]. In a paper
published in 1977, Belbruno investigated unbounded Kepler motions in the plane, and proved
that symplectic diffeomorphisms map the corresponding phase space manifolds for E > 0 onto
Lobachevsky manifolds with curvature −1, and map the manifold for E = 0 onto a Euclidean
plane punctured at the origin [24]. In the same year Osipov established that all Keplerian
motions are equivalent to geodesic flows in spaces of constant curvature [25]. In the process
he used a series of transformations, some of which when combined become nonrelativistic
versions of the transformation which we introduce in section 3.

The transformations introduced in sections 2–5 connect, and produce, coordinate systems
in which Keplerian motions of a representing point in phase space are produced by ordinary
translations, rotations and hyperbolic rotations. They describe motions on manifolds in phase
space that have self-evident symmetries determined by their invariance under such motions.
The general results are not new; their representation in this simple manner is. In establishing
it, a previously unknown result is also established: classical Kepler phase-space manifolds
are, for every value of E, determined by motions restricted by three invariant functions, one of
which is the Hamiltonian function. These functions are given explicitly. They determine the
geometric expression of the dynamical symmetries of the well-known SO(4), SO(3,1) and E(3)
degeneracy groups, and the geometric expression of the SO(3,1) group that contains them.
The connections of these symmetries to those of SO(4,2) are briefly described in section 6.

Before concluding the discussion of historical antecedents of the present work, its
conceptual dependence on some much earlier work should be noted. The constants of motion
of Kepler systems were known to Laplace [26], and to Hamilton [26]. During the second half of
the nineteenth century, the development of new conceptual insights prepared paths to a deeper
understanding of their implications. Sophus Lie’s geometric intuitions guided the development
of his theory of differential equations into a theory of the continuous groups that they define,
and depend upon for their integrability [27]. During this period, several compound sentences
were required to state the conditions now summarized in the term ‘diffeomorphism’. In the
same period, Gibb’s study of Maxwell’s equations led him to develop the geometric concept
‘vector’ [28]. Shortly thereafter, the aforementioned constants of Laplace and Hamilton were
assembled into the vector Pauli named after Runge and Lenz [29], in his, the first published
investigation of quantum-mechanical Kepler systems [30]. Milne’s Vectorial Mechanics
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[31] presents a treatment of Keplerian motion which was developed in this period. In it,
orbits and hodo-graphs are obtained as scalar and vector products of the Runge–Lenz vector
with, respectively, the position and momentum vectors of the moving body. Much later, in
1960, Synge pointed out that all of Hamiltonian mechanics admits a complete geometrization
in PQET phase space [32]. From the latter standpoint, Hamilton’s equations of motion
determine the motion of a vector in phase space, and determine the manifolds that its terminus
describes. From a Lie standpoint, Hamilton’s equations define continuous evolution groups,
and the invariance transformations of the equations define their invariance groups. The Lie
generators of these evolution and invariance transformations in phase space are Poisson-bracket
(‘PB’) operators. The transformations themselves are diffeomorphisms that leave invariant a
symplectic metric and define local Lie transformation groups in symplectic space [33]. Two
objects that can be interconverted by symplectic diffeomorphisms have the same Lie symmetry
in symplectic space. The phase space of physics should be distinguished from symplectic
space because general scale changes, which may be composed of uniform dilatations as
well as symplectic dilatations (q, p) → (a q, p/a), are often used in establishing relations
between observations and position and momentum variables. In this paper we suppose that
this has already been done, and the symmetry labels are those of Lie groups of symplectic
diffeomorphisms.

As the previous remarks suggest, geometrization of dynamical symmetries leads to
questions of their physical interpretation. The following section sets forth some of the
mathematical and logical relationships that will subsequently be used to address questions
involved in relating geometrical symmetries of Kepler systems in phase space to the physical
relationships codified in their dynamical groups.

2. Description of classical Kepler motions

We begin our treatment of Keplerian symmetries by further developing the nineteenth century
idea of referring the motion to a coordinate system defined by its vector constants of motion.
In terms of dimensionless variables in which the body’s reduced rest mass, mo, has unit value
and the potential energy is −K/r, the seven well-known scalar constants of Kepler motion are
the energy, E, the values of the components of the angular momentum vector, L = r × p, and
the values of the components of the Runge–Lenz vector which we shall express as

a(E) = (p2 + 2E)r/2 − (r · p)p. (1a)

The unit vectors

a(E)/|a(E)|, L/|L|, (a(E)/|a(E)|) × (L/|L|), (1b)

provide a convenient right-handed orthogonal unit triad and frame of reference to which one
may refer the motion and its perturbations. Because

r = (a(E) − a(−E))/|2E|, (2)

for nonzero E, the motion of a(−E) with respect to a(E) describes the motion of r. For E =
0, the motion of p with respect to a(0) determines the evolution of r. It is convenient to set
time, t, equal to zero at perhelion, at which r · p = 0.

We will replace the equation H(q, p) − E = 0, by its regularization,

r(H − E) = H − K = 0, (3a)

H = H(E) = r(p2 − 2E)/2. (3b)
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Keplerian motion in the position space of q ≡ r will be associated with the motion of points
with coordinates (q, t, p, −E), (q, p, −E ), (q, p) in the phase spaces PQET, PQE, PQ. The
Poisson bracket (‘PB’) of two functions F, G in classical PQET space will be denoted by

{F,G} =
4∑

1

(∂F/∂qj ∂G/∂pj − ∂F/∂pj ∂G/∂qj ), (4a)

with q4 = t, p4 = −E. For reasons noted in the following paragraph, though dt represents a
physical time interval, even in classical physics t may not necessarily represent Newtonian
physical time. The Poisson-bracket operator of a differentiable function F will be denoted by

{F ·} =
4∑

1

(∂F/∂qj ∂/∂pj − ∂F/∂pj ∂/∂qj ). (4b)

It generates a one-parameter group of symplectic transformations, carried out by the operator

exp(α{F ·}), (4c)

in which α is the group parameter. We will make considerable use of the operators in which
F is Lij = (qipj − qjpi), or Kij = (qipj + qjpi). The PB operators of these functions are

{Lij ·} = −((qi∂/∂qj − qj∂/∂qi) + (pi∂/∂pj − pj∂/∂pi)), (4d)

{Kij ·} = −((qi∂/∂qj + qj∂/∂qi) − (pi∂/∂pj + pj∂/∂pi)). (4e)

If F is any C2 function of p’s and q’s, then the first-order differential operator {F·} is capable
of becoming the generator of a many-parameter Lie transformation group.

Let τ be an evolution parameter which ranges through all the reals [34]. Then Hamilton’s
equations of motion in the PQET space containing H are special cases of the equation

dF(p, q)/dτ = {F ·}H = {F,H }. (5)

Equations (3) define a six-dimensional ‘Hamiltonian manifold’ in PQE and PQET space, and
a family of five-dimensional Hamiltonian manifolds in PQ phase space.

For the H of (3), equation (5) implies that dt = r dτ . For states with E � 0, both r and t
range over an open interval, but for bound states, r is cyclic, so mathematically, t is cyclic, and
confined within a compact interval. Both Hamiltonian and Lagrangian mechanics have this
property of forcing t to repeat itself when r and p do so. They thereby force ∂/∂t to become the
generator of a compact group [20]. For this reason we make use of a canonical transformation
(‘CT’) which, for different values of E, creates topologically correct coordinates in the ET
subspace of PQET space. For E < 0, E > 0, and, 0− � E � 0+, define coordinates p′

0 = (p′
0<,

p′
0>, p′

00), and q′
0 = (q ′

0<, q ′
0>, q ′

00) by

p′
0< ≡ (−2E)1/2 cos(t), q ′

0< ≡ (−2E)1/2 sin(t), E < 0, (6a)

p′
0> ≡ −(2E)1/2 cosh(t), q ′

0> ≡ (2E)1/2 sinh(t), E > 0. (6b)

p′
00 ≡ −E, q ′

00 = t, 0− � E � 0+. (6c)

The transformation (6a) is due to Poincaré [19]. For or all real values of E and |t | < 2π, the
transformation (−E, t) → (p′

0, q ′
0) is a 1:1 map from the full space of (E, t) to that of (p′

0, q ′
0)

and is C2. When t → 0, q ′
0 → 0. If one denotes negative values of E by E< and positive values

of E by E>, then when t → 0,

p′
0< → (−2E<)1/2 ≡ p0<, and E< = −p2

0<

/
2, (7a)
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p′
0> → −(2E)1/2 ≡ p0> and E> = p2

0>

/
2, (7b)

while

0− � p′
00 � 0+. (7c)

When E is negative, a(E) is given by

a(E<) = (
p2 − p2

0<

)
r/2 − (r · p)p, (8a)

Its moving counterpart, a(−E), is

a(−E<) = (
p2 + p2

0<

)
r/2 − (r · p)p. (8b)

For E > 0, a(E) and its moving counterpart are, respectively,

a(E>) = (
p2 + p2

0>

)
r/2 − (r · p)p, (8c)

a(−E>) = (
p2 − p2

0>

)
r/2 − (r · p)p. (8d)

In the following section it will be shown that with this change of coordinates in (−E, t)
space, the components of a(E) and its moving counterpart are closely related to Cartesian
momentum coordinates of relativistic free particles. This relationship connects ISO(3,1)
invariant manifolds in PQET space to classical Keplerian manifolds M(E) in PQE space.
Thereafter, the geometric symmetries of these manifolds in the phase spaces PQ, PQE and
PQET will be ‘displayed’, and the manifolds themselves will be further characterized. The
reason these geometrical symmetries in phase space persist as dynamical symmetries in
quantum mechanics will then be established.

3. The relativistic canonical transformation in PQET space

In 1909 Cunningham and Bateman discovered that solutions of Maxwell’s equations can be
interconverted by the spacetime inversions [14]

q4 →= k2q4
/(

q2
1 + q2

2 + q2
3 − q2

4

)
,

(
q2

1 + q2
2 + q2

3 − q2
4

) �= 0

with

q4 = (q1, q2, q3, q4), q4 = ct rel, (9a)

where k is a real constant, and q1, q2, q3, are local Cartesian coordinates of a point in spacetime.
In the phase space corresponding to the space of q4,

p4 = (p1, p2, p3, p4), p4 = −Erel/c, (9b)

and the Poisson bracket of two functions F and G is defined by

{F,G} =
4∑

1

(∂F/∂qj ∂G/∂pj − ∂F/∂pj∂G/∂qj ), (9c)

Here, trel is a relativistic time, and Erel is a relativistic energy equal to mc2, with m a dynamic
mass. This Poisson bracket is formally related to the classical one of (4a) by the substitution
E → Erel, t → trel, followed by the CT of dilatation that converts −Erel to −Erel/c, and trel to
ctrel.

For k2 = 2, the canonical transformation

q4 → p4, p4 → −q4, (10a)

converts the spacetime inversion, (9a), to the momentum–energy inversion

p4 → P4 = 2 p4
/ (

p2 − p2
4

)
,
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with

P4 = (P, P4), P = (P1, P2, P3), and

p4 = (p, p4), p = (p1, p2, p3). (10b)

The transformation canonically conjugate to (10b) is

−p4 → q4 → Q4 = (Q, Q4), Q = (Q1, Q2, Q3),

with

Q = (
p2 − p2

4

)
q/2 − (

q4 · p4
)

p, Q4 = (
p2 − p2

4

)
q4/2 + (q4 · p4)p4. (10c)

The CT defined by equations (10b,10c) is a relativistic analog of a Levi Civita transformation
[21]. Its inverse may be obtained by interchanging the role of the upper case and lower case
letters in these equations. In regions where q4 and p4 are nonzero the transformations are
smooth diffeomorphisms. One also finds that

−Q4 · P4 = q1p1 + q2p2 + q3p3 + q4p4 = q · p + q4p4, (10d)

Lik = (qipk − qkpi) = Q4
i P 4

k − Q4
k P 4

i , (10e)

Ki4 = qip4 + q4pi = Q4
i P

4
4 + Q4

4 P 4
i . (10f )

Lorentz transformations in PQET phase space are symplectic transformations generated
by the {Ljk·} and {Ki4·}. In the Q4, P4 coordinate system one has

{Lik·} = −((Qi∂/∂Qk − Qk∂/∂Qi) + (Pi∂/∂Pk − Pk∂/∂Pi)), (11a)

{Ki4·} = −((Qi∂/∂Q4 + Q4∂/∂Qi) − (Pi∂/∂P4 + P4∂/∂Pi)). (11b)

The three functions G

−Q4 · P4 = q4 · p4 = q1p1 + q2p2 + q3p3 + q4p4, (12a)

P 2 − P 2
4 = 4

/ (
p2 − p2

4

)
, (12b)

and

Q2 − Q2
4 = (1/4)

(
q2 − q2

4

) (
p2 − p2

4

)2
, (12c)

all satisfy

{Lij ·}G = 0, {Ki4·}G = 0. (12d)

They can therefore define Lorentz invariant manifolds in PQET space when they, or functions
of them, are set equal to constants. The functions of (12c) arise when the transformation (10)
is applied to the function p2 − p2

4, which is Poincaré invariant as well as Lorentz invariant.
This Poincaré ISO(3,1) invariance becomes a more general ISO(3,1) invariance of (12c), with
group generators {Lij ·}, {Ki4·} and {Qj·} = ∂/∂Pl, all of which annihilate Q2 − Q2

4. Taken
together, the fifteen operators

{Lij ·}, {Ki4·}, {Qj ·}, {qj ·}, and {Q4 · P 4·}, (13)

satisfy the commutation relations of the Lie algebra of the conformal group obtained from
the Bateman–Cunningham conformal group [16] by means of the transformation, (10a), that
interchanges the role of positions and momenta.
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4. Transformation of the inverted coordinates to their classical limit in PQE space

In the large c, classical, limit, if t is finite, then ct becomes infinite as −Erel/c → 0. To
transform the coordinates and relations of the previous section to corresponding non-relativistic
coordinates and relations in PQE space, we therefore choose a reference frame in which t =
0 when trel = 0. We then set Erel = E0 ± |�E|, where ± |�E| is the classical energy of the
system, E0 = m0c2 being the mass energy it would have in a rest frame in which no forces are
acting. One has

p2
4 = (−Erel/c)2 = (−(E0 ± |�E|)/c)2 = (

E2
0 + |�E|2) /

c2 ± 2m0|�E|. (14a)

In the large c limit,

p2
4 → ±2m0|�E|. (14b)

Assuming m0 has unit value, and setting 2 |�E| = p2
0, one has

p2
4 → ±p2

0. (14c)

In light of (7a), (7b), for nonzero |�E|, this gives rise to the four cases

p2
4 → p2

0< = −2E<, (14d)

p2
4 → p2

0> = 2E>, (14e)

and

p2
4 → −p2

0< = 2E<, (14f )

p2
4 → −p2

0> = −2E>. (14g)

The previous equations do not imply any relation between the sign of p4 and that of p0.
However, relations (6) of section 2, require that if

p2
4 → ±p2

0<, then p4 → p0<, (14h)

and, that if E is not negative, either

p4 → −p0>, or p4 → −p00. (14i)

Using these limits, one obtains transformations from the P4, Q4 coordinates in PQET
space to corresponding classical coordinates Pc, Qc, in PQE space. When p2

4 → ±p2
0,

P → Pc
(±p2

0

) = 2p
/ (

p2 − ±p2
0

)
, (15a)

The components of Pc
(−p2

0<

)
are 2pj

/(
p2 + p2

0<

)
, which are proportional to three of the

projective momentum variables Fock introduced in his discussion of the degeneracy of the
discrete energy levels of hydrogen-like atoms [1]. Applying the limits to the Q’s one has

Q → Qc (±p2
0

) = (
p2 − ±p2

0

)
q/2 − (q · p)p. (15b)

Using (14) the Qc
( ± p2

0

)
may be converted to functions of E. In particular,

Qc
(
p2

0<

) = (
p2 − p2

0<

)
q/2 − (q · p)p = a(E<), (15c)

and

Qc
(−p2

0>

) = (
p2 + p2

0>

)
q/2 − (q · p)p = a(E>). (15d)

These stationary vectors a(E), are converted to their moving counterparts a(−E) by changing
the signs before p2

0 in the corresponding Qc.

8
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Applying the limits to P4 = 2p4
/(

p2 − p2
4

)
, one obtains

P c
4

(±p2
0<

) = 2p0<

/ (
p2 − ±p2

0<

)
, (15e)

and

P c
4

(±p2
0>

) = −2p0>

/ (
p2 − ±p2

0<

)
. (15f )

From Q4 = (q · p)p4, one obtains

Qc
4

(±p2
0<

) = (q · p)p0< ≡ a4(E<), (15g)

and

Qc
4

(±p2
0>

) = −(q · p)p0> ≡ a4(E>). (15h)

Substituting relations (15) into (12b), (12c) yields the transformation

P 2 − P 2
4 → 4

/ (
p2 − ±p2

0

)
, (16a)

and

Q2 − Q2
4 → (1/4)(q2)

(
p2 − ±p2

0

)2
. (16b)

For ±p2
0 = 2E, the latter equation implies

((1/4)(q2)(p2 − 2E)2)1/2 = H. (16c)

Finally, it should be noted that

Q4 · P4 → Qc
(±p2

0

) · Pc
(±p2

0>

) = −(q · p). (16d)

At perhelion, where t = trel = 0 and q · p = 0, this implies that the relativistic position and
momentum 4-vectors, Q4, P4 are orthogonal, as are the classical position and momentum
4-vectors, Qc and Pc.

To summarize: the transformation from the initial Cartesian 4-vectors q, p to the
relativistic 4-vectors Q4, P4 to the non-relativistic 4-vectors Qc, Pc has the following effects:

(a) It converts free-particle momentum vectors (p, −Erel/c) into 4-vectors Q4, and these into
Qc whose first three components are the three Runge–Lenz constants of motion, aj(E),
and whose fourth component, a4(E), is proportional to q · p. It also creates the moving
counterparts of these functions and vectors.

(b) It produces a 4-vector P4, conjugate to Q4, and then converts P4 to Pc, whose first three
components are proportional to three of Fock’s projective momenta. (The relation of
its fourth component to Fock’s fourth projective momentum component is discussed in
section 5.)

(c) It transforms the Poincaré-invariant free-particle Hamiltonian system defined in PQE
space by

H rel
fp ≡ (

p2 − p2
4

)1/2 = K, (17a)

into the Lorentz and ISO(3,1) invariant Hamiltonian system defined by

H rel
K ≡ (

(Q4)2 − (
Q4

4

)2)1/2 = (1/2)
(
q2 − q2

4

)1/2 (
p2 − p2

4

) = K. (17b)

It then converts this manifold into the regularized classical Kepler Hamiltonian system
defined in PQE space by

H = (1/2)(q2)1/2(p2 − 2E) = K. (17c)

The Lie generators of the invariance groups of equations (17a)–(17c) are PB operators,
{Fj ·}, that satisfy {Fj ·}H | = 0. That is, {Fj ·}H = 0, when H = K. The transformations carried
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out by exp(aj{Fj ·}), with group parameter α, leave the equations of motion invariant, and
convert solutions of the Hamiltonian equations of motion of H into solutions. The commutation
relations of the invariance generators determine local dynamical symmetry groups, and it is
the action of these generators on the coordinates of points in phase space that expresses the
symmetry of manifolds in PQE and PQET space. The degeneracy groups of the systems are
defined by operators {Fj ·} that do not alter the energy of the system. They define submanifolds
M(E) in six-dimensional PQ phase space. Equations (17a)–(17c) do not, as they stand, fully
define these manifolds. The additional functions required for the classical Kepler system are
obtained in the following section.

5. Geometrical interpretation of the classical degeneracy groups in phase space

In this section, the results of the previous sections are used to extend the moving three vectors
a(−E), of section 1, to corresponding 4-vectors ρ(E) and π(E), in PQE space. To accomplish
this, the action of the PB operators {Aj(E)·} upon Qc and Pc is examined. The moving vectors
ρ(E) become identified with the Qc(−E). The action of {Aj(E) ·} on the Pc directly determines
the components of 4-vectors, π(E), that have the same transformation properties as the ρ(E).
The fourth components of the π(E) are shown not to be identical to those of the Pc. The
generators of the degeneracy groups become first-order differential operators of the form (4d),
(4e), but with q’s and p’s replaced by ρ’s and π’s. The regularized Hamiltonian functions
H(E), and two further quadratic functions of the ρ(E) and π(E), all with the symmetry of
H(E), will be shown to determine the manifolds M(E) upon which points representing Kepler
motions evolve in phase space.

We first consider bound-state Kepler motion with E = E< = −p2
0<

/
2. One may define

four locally Cartesian coordinates of a point at the terminus of the moving vector ρ< =
(a(−E<), a4(−E<)) by

ρj< ≡ (
p2 + p2

0<

)
qj/2 − (q · p)pj , j = 1, 2, 3, (18a)

and

ρ4< ≡ (q · p)p0<. (18b)

The vector ρ< is a special case of the vector Qc. One finds that

ρ2
< ≡

4∑

1

ρ2
j< = ((r/2)

(
p2 + p2

0<

)2 = H(E<)2, (19)

It follows that for E < 0, the defining equation H = K, may be expressed as ρ< = K.
The ‘renormalized’ stationary three-vector, A< has components

Aj< = (1/p0<)
((

p2 − p2
0<

)
qj/2 − (q · p)pj

)
, (20)

The PB operators {Ai< ·} and {Lij ·} obey the SO(4) commutation relations:

[{Ai<·}, {Aj<·}] = {Lij ·}, [{Lij ·}, {Aj<·}] = −{Ai<}, and

[{Lij ·}, {Ljk·}] = −{Lik·}. (21)

The SO(4) group operators exp(αj{Aj<}) and exp(λij{Lij }) move points at the terminus of ρ< =
(ρ1<, ρ2<, ρ3<, ρ4<). The action of {Ai<·} and {Lij ·} upon the ρ j< is as follows:

{Ai<·}ρj< = δij ρ4<, {Ai<·}ρ4< = −ρi<,

{Lij ·}ρj< = −ρi<

(22)

10
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Thus, both the {Ai<·} and the {Lij ·} generate rotations of the 4-vector ρ<. These rotations
move points on a surface with

ρ< · ρ< = (r(p2 − 2E)/2)2 = H = K2, (23)

which therefore has SO(4) rotational symmetry. Consequently, for E < 0, the equation H = K
defines an S(3) hypersphere with radius K.

Next let

πi< = 2p1
/ (

p2 + p2
0<

)
, i = 1, 2, 3. (24a)

The action of the {Ai<·} on these produces a further momentum coordinate,

π4< ≡ (1/p0<)
(
p2 − p2

0<

) / (
p2 + p2

0<

)
. (24b)

It and the other π ’s satisfy the relations

{Ai<·}πj< = δijπ4<, {Ai<·}π4< = −πi<. (24c)

The four functions π i< are Fock’s projective momentum coordinates [1], divided by p0<. They
satisfy the identity

E< = (−1/2)
/ (

π2
1< + π2

2< + π2
3< + π2

4<

)
. (25)

Equations (24) imply that {Ai<·} generate rotations of the locally Cartesian 4-vectors π< ≡
(π1<, π2<, π3<, π4<). The {Lij ·} also generate rotations of the π<, and equations (22)–(25)
imply that in six-dimensional PQ space, rotations on the two hyperspheres defined by (23) and
(25), are carried out by transformations generated by Poisson-bracket operators which have
the realization

{Ai<·} = −(ρ1<∂/∂ρ4< − ρ4<∂/∂ρi< + π1<∂/∂π4< − π4<∂/∂π1<), i = 1, 2, 3,

{Lij ·} = −(ρi<∂/∂ρj< − ρj<∂/∂ρi< + πi<∂/∂πj< − πj<∂/∂π1<), i < j = 1, 2, 3.

(26)

The evolution of ρ< is determined by the equation

dρ</dτ = {ρ<, ρ<} = p2
0<H π< = p2

0<K π<. (27a)

and that of the π< is determined by

dπ</dτ = {π<, ρ<} = −ρ</H = −ρ</K. (27b)

Consequently,

d2ρ</dτ 2 = −p2
0<ρ<, d2π</dτ 2 = −p2

0<π<. (28)

The motions of ρ< and π< are constrained by the further relation
4∑

1

ρj<πj> ≡ ρ< · π< = 0. (29)

Thus, for each value of E, the bound-state motions in six-dimensional PQ phase space evolve
on an SO(4) invariant manifold M(E), defined by the three equations

ρ< · ρ< = K2, (30a)

(p0<π<) · (p0<π<) = 1, (30b)

ρ< · π< = 0. (30c)

The two vectors ρ< and p0<π< may be considered to originate at the origin p = 0, q = 0 in
phase space, and, because of (30c), the vectors ρ< + p0<π< and ρ< − p0<π< both terminate

11
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on the surface of an S(3) hypersphere of radius (K2 + 1)1/2. As the system evolves, the angle
between them, θ = arccos((K2 − 1)/(K2 + 1)), remains constant.

We conclude this section with a brief discussion of Keplerian systems with fixed non-
negative energies. When the energy is positive, E = E> = p2

0>

/
2. The constant reference

3-vector, A> ≡ a>/|p0>| has components

Aj> = ((
p2 + p2

0>

)
qj/2 − (r · p)pj

)
/ip0>i, (31)

and the moving 4-vector ρ> has components

ρj> = (
p2 − p2

0>

)
qj/2 − (r · p)pj , i = 1, 2, 3; (32a)

ρ4> ≡ −(r · p)p0>. (32b)

The corresponding components of the vector π> are

πj> = 2pj/(p
2 − p0>), π4> ≡ (1/p0>)

(
p2 + p2

0>

) / (
p2 − p2

0<

)
. (33)

One finds

ρ2
1> + ρ2

2> + ρ2
3> − ρ2

4> = H 2 (34a)

E> = (1/2)
/ (

π2
4> − (

π2
1> + π2

2> = π2
3>

))
, (34b)

3∑

1

ρj>πj> + ρ4>π4> = 0. (34c)

The action of the PB operators of Ai> and Lij on the coordinates ρ j>, and π j> is expressed by

{Ai>·} = −(ρi>∂/∂ρ4> + ρ4>∂/∂ρi>) + πi>∂/∂π4> + π4>∂/∂πi> i = 1, 2, 3,

{Lij ·} = −(ρi>∂/∂ρj> − ρj>∂/∂ρi> + πi>∂/∂πj> − πj>∂/∂πi>), i < j = 1, 2, 3.
(35)

These generate an SO(3,1) invariance group of relations (34a–c). The evolution of ρ> and
π>, is governed by the equations

dρ>/dτ = {ρ>, ρ>} = −2E>Hπ>, (36a)

d/dτ = {π>, ρ>} = −ρ>/H (36b)

and

d2ρ>/dτ 2 = p2
0>ρ>, (36c)

d2π>/dt2 = p2
0>π>. (36d)

Equations (34) determine an SO(3,1) invariant 3-manifold in phase space upon which the
termini of the vectors ρ> + p0>π<> and ρ<> − p0>π> evolve.

When E = 0, one has

aj0 = p2qj/2 − (r · p)pj , j = 1, 2, 3; (37a)

a40 = (r · p)p00. (37b)

Consequently,

ρj0 = aj0, (37c)

12
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ρ40 = (r · p)p00, (37d)

with 0− � p′
00 � 0+. The components of the vector π0 are

πj0 = 2pj/p
2, j = 1, 2, 3. (38a)

while

p00π40 = 1. (38b)

It follows that

4∑

1

ρ2
j0 = (rp2/2)2 = H 2, (39a)

4∑

1

π2
j0 = 4/p2, (39b)

4∑

1

ρj0πj0 = 0. (39c)

One finds

{aj0·} = ∂/∂πj0, j = 1, 2, 3, (39d)

{Lij ·} = −(ρi0∂/∂ρj0 − ρj0∂/∂ρi0 + πi0∂/∂πj0 − πj0∂/∂πi0), i < j = 1, 2, 3. (39e)

Because a(0) = a(E) + a(−E), a Lie algebra that contains a(E) and a(−E) also contains a(0).
The evolution of the vectors ρ0 and π0 is determined by the equations

dρ0/dτ = {ρ0, ρ0} = 0, (40a)

dπ0/dτ = {π0, ρ0} = −ρ0/H. (40b)

Consequently,

d2ρ0/dτ 2 = 0, (40c)

d2π0,/dt2 = 0. (40d)

To summarize: as E varies, a(E), ρ(E) = a(−E), and π(E), all adjust themselves in such
a manner that the relation r(H − E) = 0 and the equations of motion, together determine
manifolds in PQET phase space defined by three relations

(
ρ2

1 + ρ2
2 + ρ2

3 + g44ρ2
4

)1/2 = K, (41a)

E> = (−1/2)
/ (

π2
1 + π2

2 + π2
3 + g44π

2
4

)
, (41b)

(
ρ1π1 + ρ2π2 + ρ3π3 + g4

4 ρ4π4
) = 0, (41c)

with

g44 = g44 = g4
4 = 1, if E < 0; (41d)

g44 = g44 = 0, g4
4 = 1, if E = 0 (41e)

13
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and

g44 = g44 = −1, g4
4 = 1, if E > 0. (41f )

For each range of E, the points that represent the systems evolve on manifolds in phase
determined by these equations. The manifolds have geometric symmetries determined by the
Lie generators of the corresponding degeneracy group, all of which are first-order differential
operators that are of degree one or zero in the variables ρ j and π j. For any given value of
E the relations in (41) constrain the motions to curved three-dimensional manifolds in six-
dimensional PQ space. These together with the evolution equations (28), (36), (40) display
in a simple manner the general relationships between Kepler motions in phase space and
equivalent flows on manifolds of constant curvature relationships established in the previously
mentioned papers of Moser, Souriau, Belbruno and Osipov [22–25].

6. The SO(4,1) and SO(4,2) dynamical groups

In clarifying the geometric interpretation of the SO(4,1) and SO(4,2) transformations that
change E in PQE space it is helpful to establish a connection with the treatment of the
regularized hydrogen-like given by Barut and Bornzin [35] and Bednar [36]. The operators
Jab and Kab, of the classical treatment given here are in 1:1 correspondence with the Schrödinger
operators used by Bednar in his treatment of the regularized Schrödinger equation. (Because
the Hamiltonian operator is multiplied by r, the scalar products used to define operator
adjointness are not the usual ones. However, they, and the form of the self-adjoint group
generators, are well known: the momentum-space scalar product is that of Fock, and from
this it follows that one must insert a factor of 1/r = (

p2 + p2
0<

)/
2p2

0< into the position-space
scalar product of Schrödinger [37]).

Define the PB operators

S(α) = exp(αD), (42a)

D = {(q · p)·} = p∇p − q · ∇q. (42b)

Then

S(α)p = exp(α)p, (42c)

S(α)q = exp(−α)q. (42d)

These finite transformations may be used to convert the vectors a(E) with E = ±1/2 to vectors
A(E). If exp(α) = p0, then,

S(α)a(−1/2) = S(α) (((p2 − 1)q/2 − q · p p) − q/2) = A
(−p2

0

/
2
)
, (42e)

and

S(α)a(1/2) = A
(
p2

0

/
2
)
. (42f )

Because a(0) = (a(−1/2) + a(1/2))/2, it is not necessary to treat the E = 0 case separately.
The general effect of S(α) on a(−1/2) and a(1/2) is such that

S(α){a(1/2)·} = cosh(α) {a(1/2)·} + sinh(α) {a(−1/2)·}, (43a)

and

S(α){a(−1/2)·} = cosh(α) {a(−1/2)·} + sinh(α) {a(1/2)·}. (43b)

14
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The relations (42), (43) enable one to use D and the components of a(−1/2) and a(1/2)
to provide PB operators that constitute a basis for the Lie algebras and groups that act in the
E < 0, 0− � E � 0+ and E > 0, subspaces of PQET space. Set D = K45 = K45, and for i < j ,
j = 1, 2, 3, define the operators

Jij = {Lij ·} = −Jji, (44a)

Jj4 = {aj (−1/2)·} ≡ −J4j , (44b)

Kj5 = {aj (1/2)·} ≡ K5j . (44c)

The Jij , Jj4 satisfy the commutation relations of the SO(4) bound-state degeneracy group
of the Kepler system, and the Jij , Kj5 satisfy the commutation relations of the SO(3,1), E > 0,
degeneracy group. The Jij , Jj4, Kj5, and K45 together generate an SO(4,1) invariance group of
H(E) and the equations of motion. The group generated by K45 and these nine operators is
the SO(4,1) dynamical group of Kepler systems: the three degeneracy subgroups of the ten-
parameter group SO(4,1) are invariance groups of the regularized classical Kepler Hamiltonian,
H(E), for different ranges of E. It corresponds to the ten-parameter invariance group ISO(3,1)
of the relativistic Hamiltonians of (12b), (12c).

The SO(4,1) group is a subgroup of an SO(4,2) group which is generated by the ten
operators that generate SO(4,1) and the five further operators

J56 ≡ {−r(p2 + 1)/2·} ≡ −J65, (45a)

K46 ≡ {r(p2 − 1)/2·} ≡ K64, (45b)

Kj6 ≡ {r pj ·} ≡ K6j , j = 1, 2, 3. (45c)

The operator J56 carries out rotations that are those of the angle variable of an action-angle pair,
and K46 carries out analogous hyperbolic rotations. These two, together with K45, generate
an SO(2,1) transformation group. Composing rotations generated by J56 with hyperbolic
transformations generated by the Ki5 produces the transformations generated by the Kj6. The
Kj6 also arise when the rotations generated by the Ji4 are composed with the hyperbolic rotations
generated by K46. The nonzero commutators of the 15 SO(4,2) generators may be put in the
form

[Jab, Jbc] = −Jac, [Jab,Kbc] = −Kac, [Kab,Kbc] = −Jac. (46)

7. Lie algebraic extension of Dirac’s correspondence principle

In this section we establish conditions under which Dirac’s correspondence principle produces
an isomorphism between the Lie algebra of a closed set of Poisson-bracket operators and the
Lie algebra of a corresponding set of quantum-mechanical operators.

The components Q4
op j , P

4
op k , of quantum mechanical analogs of the canonically conjugate

inversion variables (11b), (11c) can satisfy
[
Q4

op j , P
4
op k

] = i(h/2π)δj,k,
[
Q4

op j ,Q
4
op k

] = 0 = [
P 4

op j , P
4
op k

]
. (47)

They are able to obey Dirac’s correspondence principle without being of the functional form
Dirac assumed when advancing the principle. Because of this, and because the principle
itself can produce ambiguities, we begin our discussion with a brief statement of the form of
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the correspondence principle which we will use. Suppose the members of a set of classical
mechanical functions X0

j are of the general form

X0
j (q, t, p,E) =

∑

ν

fνj (q, t)gνj (p,E), (48a)

and suppose that f ’s and g’s are polynomial functions of their arguments. Let the
corresponding self-adjoint quantum mechanical operators be

χ0
j = (1/2)

∑

ν

(fνj (q, t)gνj (pop, Eop) + (fνj (q)gνj (pop, Eop))+, (48b)

or

χ0
j = (1/2)

∑

ν

(fνj (qop, top)gνj (p,E) + (fνj (qop, top)gvj (p,E))+. (48c)

For a given definition of adjointness, equations (48) set up a two-way, 1:1, correspondence
between quantum mechanical operators and classical functions. Though the adjoints of Eop =
i∂/∂t and top = −i∂/∂E are not defined in Schrödinger mechanics, we shall suppose that they
are appropriately defined whenever they are involved in correspondences of the form defined
in (48). In this paper we often avoid the problem by treating E as a parameter rather than
a dynamical variable. Dirac noted that his correspondence principle applied to polynomial
functions of q’s and p’s, and then pointed out that similarity transformations in quantum
mechanics take on the role played by canonical transformations in classical mechanics [38].
Thus, for Dirac’s correspondence principle to be obeyed it is sufficient, but not necessary, that
X0

j and χ0
j be of the form (48b) or (48c). If the quantum mechanical q’s and pop’s or p’s and

qop’s of (48) undergo a similarity transformation with operator S that preserves their quantum
mechanical conjugacy, then the classical conjugacy of q’, and p’s will also be preserved if the
corresponding classical transformation, T, is a symplectic diffeomorphism. This sets up the
correspondences

X0
j ↔ T X0

j T −1, (49a)

and

χ0
j ↔ S χ0

j S−1, (49b)

correspondences between functions X and operators χ that is more general than that provided
via (48), for the fνj and need gνj no longer be polynomial functions of their arguments.

The variables Qi and Pj introduced in section 3 are related to ordinary Cartesian q’s and p’s
by a transformation which produces a singularity at the origin in PE momentum space. For this
reason the argument justifying (49) is problematical. However, if for example, one replaces qj

in each Qk by/(h/2π )∂/∂pj, supposed self-adjoint, and puts the result in the symmetrized self-
adjoint form given in (48c), one obtains the relations given in (47). Equation (47) exemplifies
a two-way correspondence Xj ↔ χ j, that obeys Dirac’s correspondence principle—a principle
that can be valid even when the functions and operators are not of the polynomial forms
given in (48) or (49). For this reason we shall henceforth only assume that the functions Xj

and functionals χ j may be of the more general symmetrized form obtained by relaxing the
requirement that the fνj and gνj in (48) be polynomials. As is often the case when attempting
to apply the correspondence principle, each case must be separately investigated.

Now suppose that a set of such symmetrized self-adjoint functions Xj are members of a
Poisson-bracket Lie algebra of functions

{Xi,Xj } = ck
ijXk. (50a)
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If Dirac’s principle is valid, it requires that the corresponding symmetrized self-adjoint
operators χ j are members of the commutator Lie algebras

(−i/(h/2π))[χj , χj ] = ck
ijχk. (50b)

To determine the relation of these two Lie algebras to the commutator Lie algebras of Poisson-
bracket operators {Xi·}, let F be any C2 function of p’s and q’s. Then, on applying the Jacobi
identity to the relation

[{Xi}, {Xj ·}]F = {Xi, {Xj, F }}, (50c)

one establishes that if Xj satisfy the PB relations (50a), then Xj satisfy the commutation
relations

[Xi,Xj ] = ck
ijXk, (50d)

with identical structure constants. However, if any choice of basis in (50a) (or (50b)) has
an Xm (or a χm) that is a constant, then the corresponding Xm = {Xm·} in (50d) will vanish.
If the constant is not zero, the Lie algebra of Poisson-bracket operators will not then be
usefully isomorphic to the quantum mechanical Lie algebra, even when Dirac’s correspondence
principle holds true. The oscillator energy-shift algebra of Dirac provides an example of this:
it has the Heisenberg algebra q, ps, i(h/2π ), as a basis, and {q·} = −∂/∂p, {p·} = −∂/∂q,
while {1·} = 0 = {i(h/2π )·}.

If, on the other hand, the Lie algebras (50a), (50b) are isomorphic and have no basis
containing a nonzero constant operator, χ j = k, then (50d) defines an extension of Dirac’s
correspondence principle to a Lie algebraic correspondence between commutation relations
of Poisson-bracket operators and commutation relations of quantum mechanical operators.
When this occurs, the Lie algebras (50a), (50b), (50d) determine locally isomorphic quantal
and classical Lie dynamical groups—groups which can be viewed as arising from geometric
symmetries in classical phase space.

This is the case for the Lie algebras of the ISO(3,1) invariance groups of the relativistic
systems considered herein, and the SO(4,1) and SO(4,2) Lie algebras of classical Kepler
systems. For the latter, the classical dynamical group is a symplectic realization of SO(4,2) in
a phase space. The SO(4,2) dynamical symmetry of the corresponding atomic system is that
of the regularized Schrödinger equation which is the analog of H = K. Because all three Lie
algebras, (50a), (50b), (50d), are in this case isomorphic, the geometric symmetries of Kepler
systems in phase space find physical expression in the behavior of the electron in a hydrogen
atom and in the motion of massive heavenly bodies. Both display consequences of SO(4,2)
geometric symmetry in phase space—despite the uncertainty principle.

8. Concluding remarks

In the previous paragraphs, a canonical transformation in PQET space has been used to relate
free-particle motions, defined by a Poincaré-invariant Hamiltonian function, to accelerated
motions defined by an ISO(3, 1) invariant Hamiltonian that is a Lorentz invariant analog of a
regularized classical Kepler Hamiltonian. A canonical diffeomorphism in ET space has been
used in defining a large c limit that relates the PQET space of the open relativistic trajectories
of these systems to subspaces of classical PQE space which contain Keplerian trajectories of
the same, or differing topology. Taking this limit converts the second Hamiltonian function
into the regularized Hamiltonian that determines the evolution of classical Kepler systems.
Motions in which the Runge–Lenz vector a(E) is constant were described by motions of
a(−E), and as constrained motions of 4-vectors ρ, π in the phase spaces PQ, PQE, PQET.
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Keplerian motions of the ρ, and π are generated by first-order derivative operators that are
Lie generators of rotations, hyperbolic rotations and translations in PQE phase space. All
of these motions are confined to manifolds which are defined by three invariant functions of
the positions and momenta, functions with self-evident symmetries in the ρ, π coordinate
systems. The local geometrical symmetries of these Kepler manifolds in phase space are the
same as the dynamical symmetries of Kepler motions—and the same as the well-known local
dynamical symmetries of quantum mechanical Keplerian systems.

This correspondent raises the question, ‘Under what conditions does the uncertainty
principle allow geometric symmetries in the phase space of a dynamical system to be locally
identical to its quantum mechanical dynamical symmetries?’ The question was answered in
section 7 with the aid of a ‘Lie algebraic extension of Dirac’s correspondence principle’. The
formulation of the principle begins with the establishment of a 1:1 correspondence between a
large class of quantum mechanical operators and their Poison-bracket operator counterparts.
It then establishes the mathematical criterion that determines whether the corresponding
quantum mechanical operators and Poisson-bracket operators are generators of Lie algebras
that act isomorphically. When the criterion is satisfied, the uncertainty principle allows the
physics of the quantum mechanical system, and the physics of the corresponding classical or
relativistic system, to express consequences of the locally identical geometrical symmetries
in phase space. As it is satisfied for the relativistic, classical and quantum mechanical
systems considered herein, the dynamics of all may be considered to exhibit consequences of
geometrical symmetries in phase space.

The formulation of Dirac’s correspondence principle given at the beginning of section 7
has been designed to eliminate the ambiguities—‘impediments to quantization’—that can
develop because the usual formulation of the principle does not prescribe any ordering of
non-commuting operators [39]. By also taking into account non-polynomial functions and
their corresponding quantum mechanical functionals, the discussion produces a substantial
extension of the range of validity of an earlier statement of the consequences of extending the
correspondence principle to Poisson-bracket operators [18].

It should be noted that though the connections we establish involve a Bateman–
Cunningham inversion, we have not established any connections between the SO(4,2)
invariance of Maxwell’s equations, and the SO(4,2) dynamical symmetries of non-relativistic,
or relativistic, one-electron atoms. Also, we would call attention to the fact that the relativistic
regularized Kepler system produced by the canonical transformation of section 3 is a model
system in which the attracting center is fixed at the spacetime origin. For a physical two-particle
relativistic system, it is subject to the same criticism that Eddington leveled against Dirac’s
relativistic treatment of hydrogen-like atoms [40]. It is most interesting, and significant, that
in designing a non-perturbative method for circumventing this problem, Barut and Baquini
directly established that relativistic hydrogen atoms possess an SO(4,2) dynamical group [41].

Though our treatment of Kepler symmetry depends upon the group theory of Sophus
Lie, rather than the tensor analysis of Tulio Levi Civita, it may be considered to be an
application of concepts of geometrodynamics [42]. From section 3 on, no interactive forces
or potentials have been assumed; the effects of the Lorentz invariant generalization of a 1/r
potential upon the motions of a free particle have been produced geometrically by mappings
which convert a Poincaré-invariant Hamiltonian function into an ISO(3,1) invariant analog of
a regularized classical Kepler Hamiltonian. We have not addressed any physical questions
associated with geometrodynamic interpretations of these mappings as passive rather than
active transformations. This would require a geometrodynamic treatment of phase spaces.
It would also require the extension of Einstein’s interpretation of the consequences of the
ISO(3,1) invariance of Maxwell’s equations to an analogous passive interpretation of the
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consequences of their inversion invariance. In this connection, readers are referred to Kastrup’s
reviews [15].
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